

An Extension to the Dynamic Window Approach for arbitrarily shaped Robots

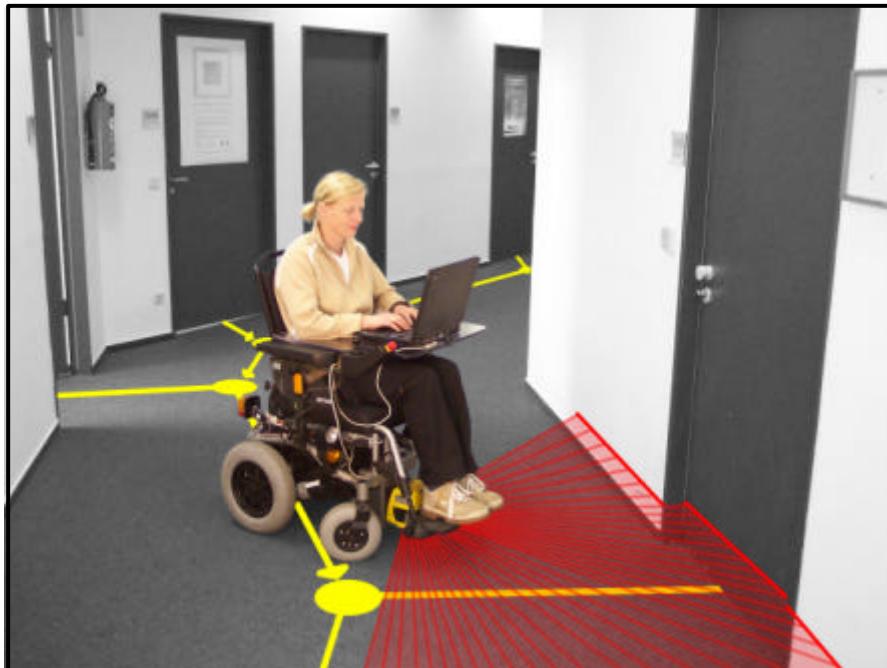
Overview

- Rolland: new hardware platform
- Motivation
- Basic principles of the **Dynamic Window Approach**
- DWA & the problem with non circular shaped robots
- Implementation issues: Curve Segments Table, Collision Table
- Computing the Trajectory
- Computing the Velocity Profile
- What remains to do
- Preliminary Experiments

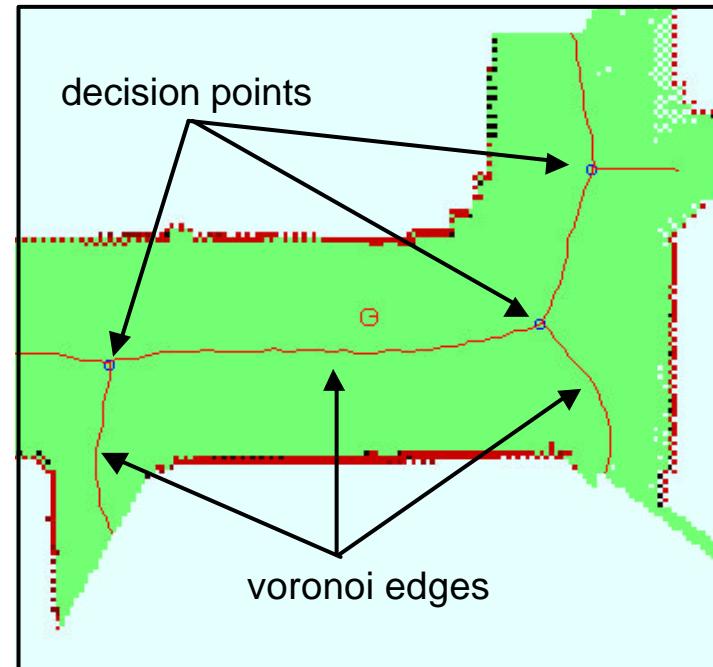
- Rolland: hardware platform

- Meyra Champ wheelchair
- omnidirectional camera system
- controlling laptop connected via single usb cable
- emergency stop button
- 2 laser range finder
- 2 incremental encoders

Motivation



Wheelchair in its environment

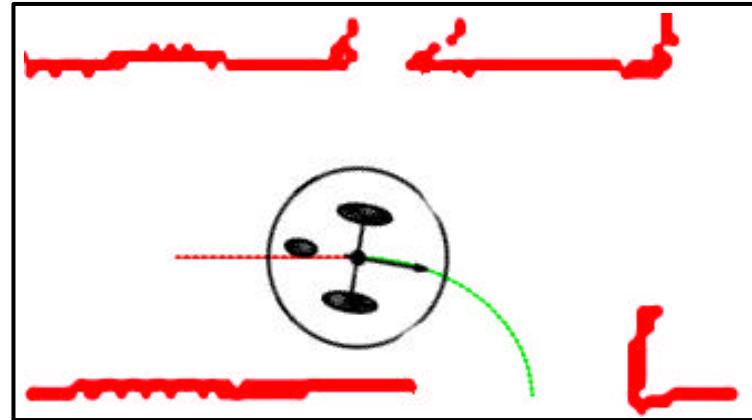


Metrical & topological representation.

How to navigate between decision points while taking care of dynamic obstacles?

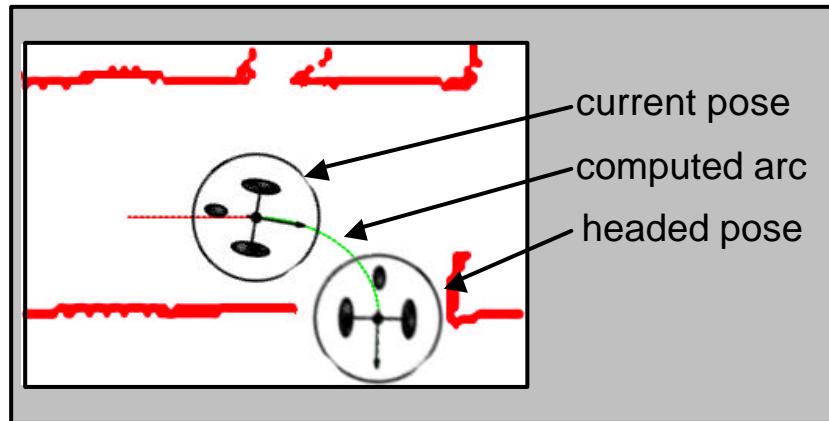
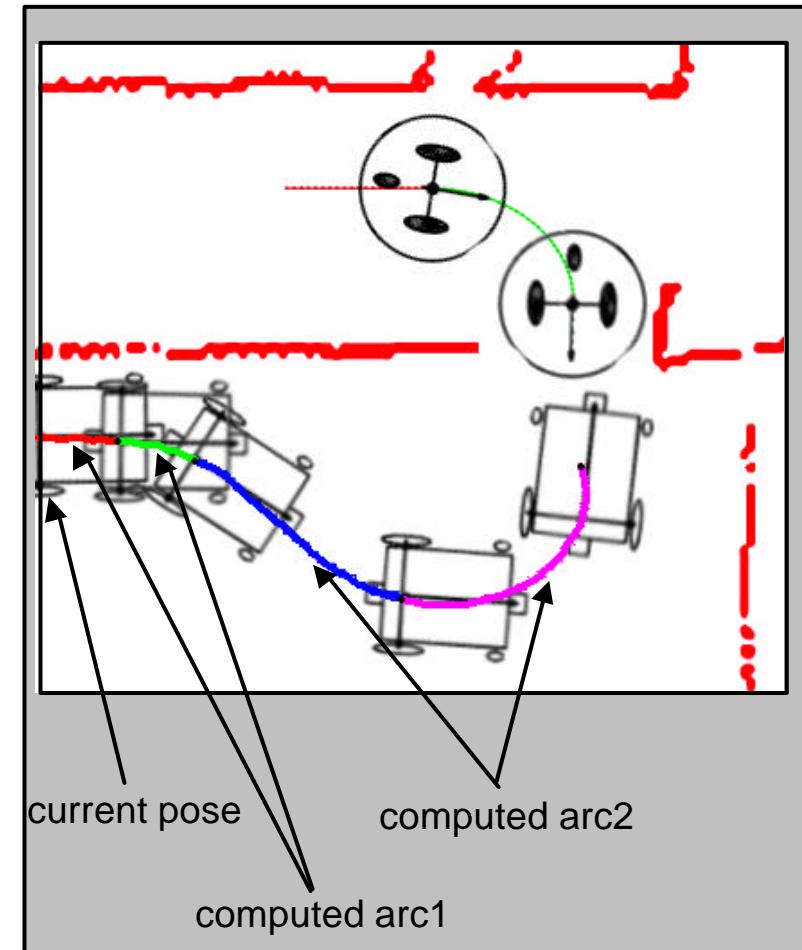
Basic principles of the **Dynamic Window Approach**¹

- Local navigation combined with reactive collision avoidance.
- **DWA** assumes: Robot velocity is a piecewise constant function in time.
- **DWA** considers: Robot has initial velocity and limited accelerations
- **DWA** computes optimal circular arc in every time step.
- **DWA** looks one curve ahead.

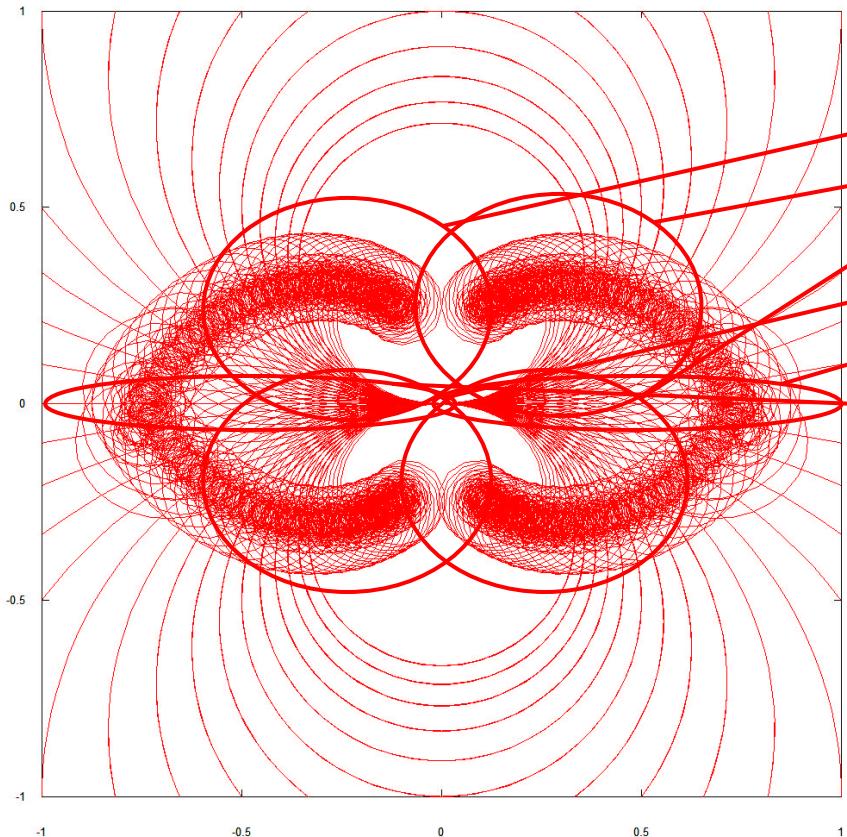


¹ [Fox, Burgard, Thrun] „The Dynamic Window Approach To Collision Avoidance“

DWA & the problem with non circular shaped robots



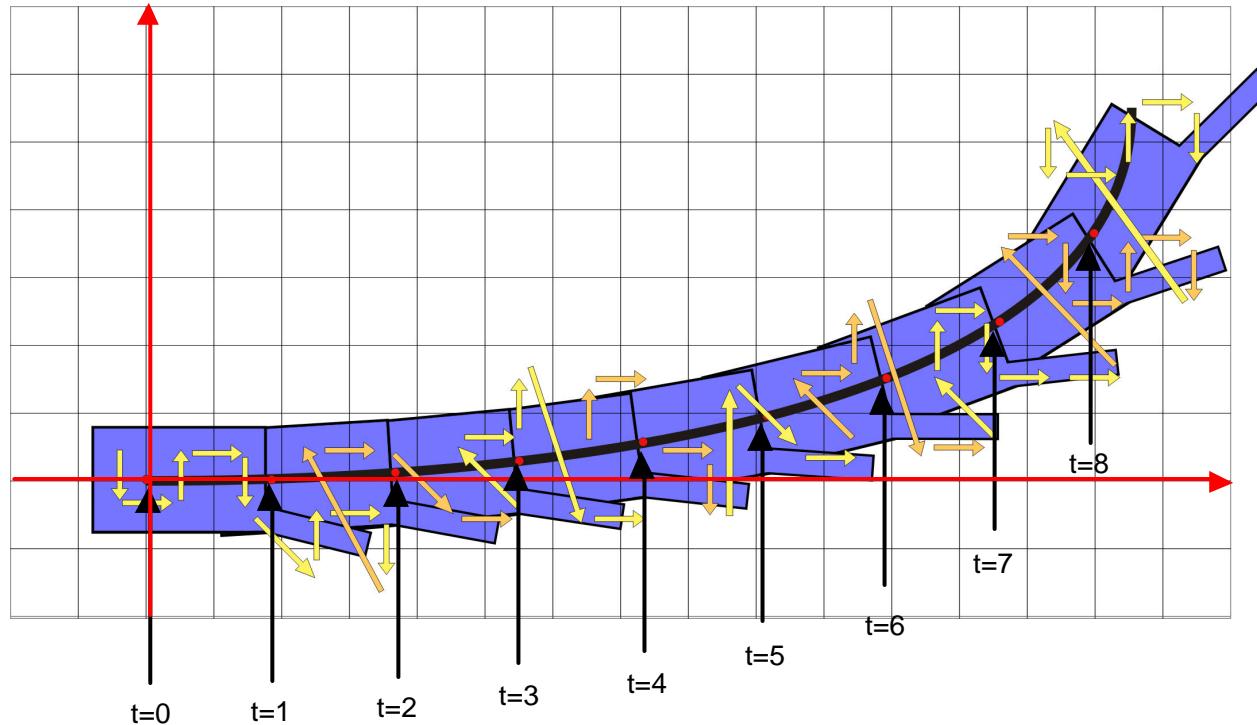
Curve Segments Table



start curvature	curvature prime	direction	poses
0	+ MAX	backwards	$(x_0, y_0, \mathbf{q}_0), \dots$
0	- MAX	forwards	$(x_0, y_0, \mathbf{q}_0), \dots$
0	+ MAX	forwards	$(x_0, y_0, \mathbf{q}_0), \dots$
0	- MAX	backwards	$(x_0, y_0, \mathbf{q}_0), \dots$
0	0	forwards	$(x_0, y_0, \mathbf{q}_0), \dots$
0	0	backwards	$(x_0, y_0, \mathbf{q}_0), \dots$
...

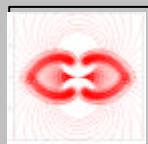
Collision Table

arclength (t)	0	...
offset between occupied cells ($\{(x_1, y_1), \dots, (x_n, y_n)\}$)	$\{(0, -1), (1, 0), (0, 1), (1, 0), (0, -1), (1, -1), (0, 1), (1, 0), (0, -1)\}$...

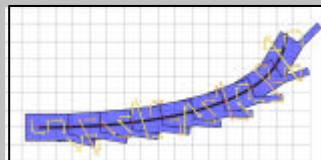


Algorithmic Refinements 1

Goal:
reduce Size of



Curve Segments Table



Collision Table

Precompute and store only paths whose first pose has zero heading.

Test-for-Collision-Operation has to rotate CT-entries.

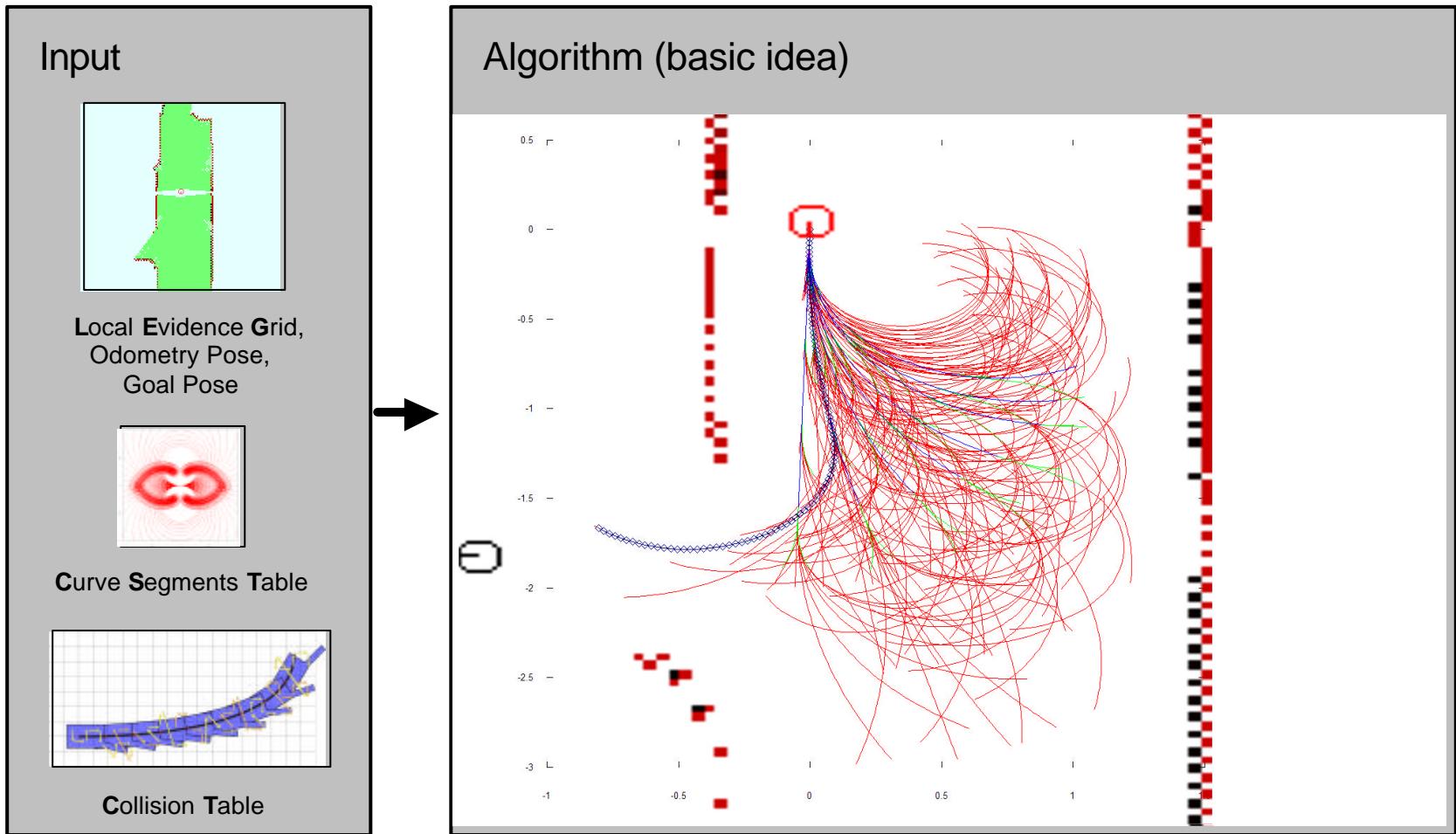
Precompute additional table which holds rotated offsets between occupied cells.

Score Function



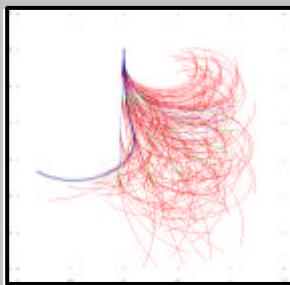
$$score(path, startPose, headedPose) = |\vec{d}| + c_1 * \vec{a} + c_2 * path.length$$

Computing the Optimal Path



Algorithmic Refinements 2

Goal:
reduce complexity
of computation



Computing the
optimal path w.r.t.
objective function

Algorithm (with constant $arc2.length$)

set $arc2.length = MAX_arc2.length$

$\forall arc1.curvature, arc1.length, arc1.direction$ do

$\forall arc2.curvature, arc2.direction$ do

- construct $path$
- **test for collision** and prune if necessary
- **minimise $path.score$**
- if ($path.score < bestPath.score$)
set $bestPath = path$

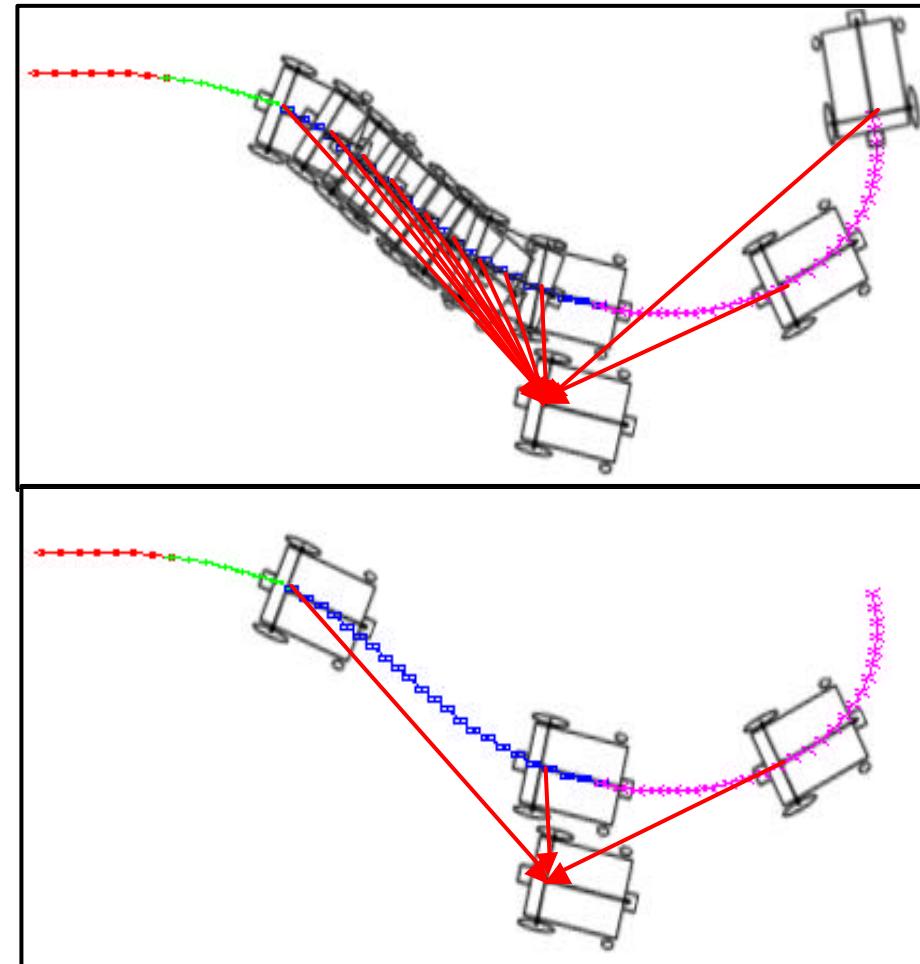
Algorithmic Refinements 3

Algorithm
(with constant
 $arc2.length$)

minimise
 $path.score$

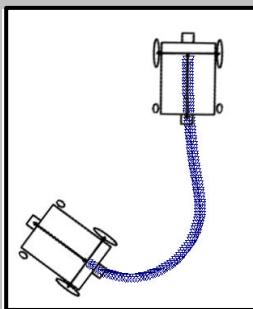
\forall potential $goalPose$
 $\in arc2$ do

- calc score
- store $goalPose$
with minimal score



Computing the Velocity Profile

Input



Solution Path
 $path = \{pose_0, \dots, pose_n\}$
 Velocities in Start & Goal
 v_{start}, v_{goal}
 Lateral Acceleration Limit
 a_{max}
 Longitudinal Acceleration Limit
 v_{max}
 Rotational Velocity Limit
 W_{max}
 Longitudinal Velocity Limit
 v_{max}

Algorithm

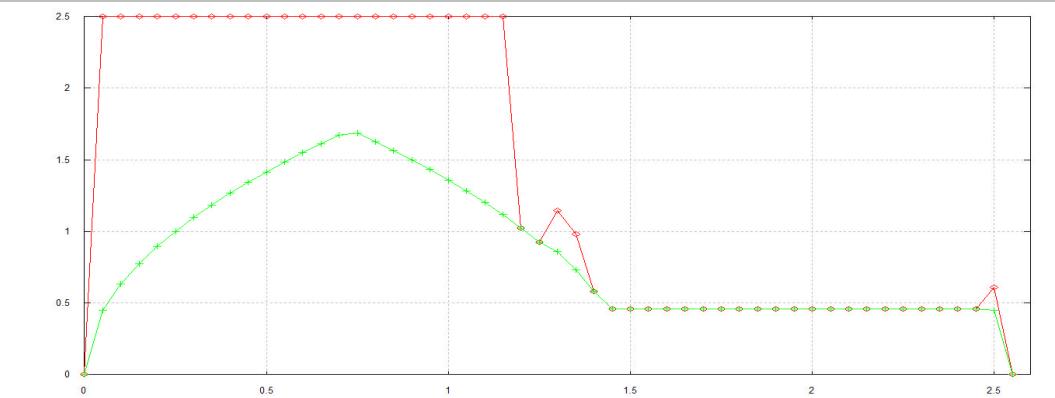
FOR EVERY $pose_i \in path$ DO:

COMPUTE MAXIMUM velocity v_i FOR WHICH HOLDS:

$$|v_i| = \min(v_{max}, \sqrt{\frac{a_{max}}{pose_i.c}}, \frac{W}{pose_i.c})$$

FOR EVERY v_i DO:

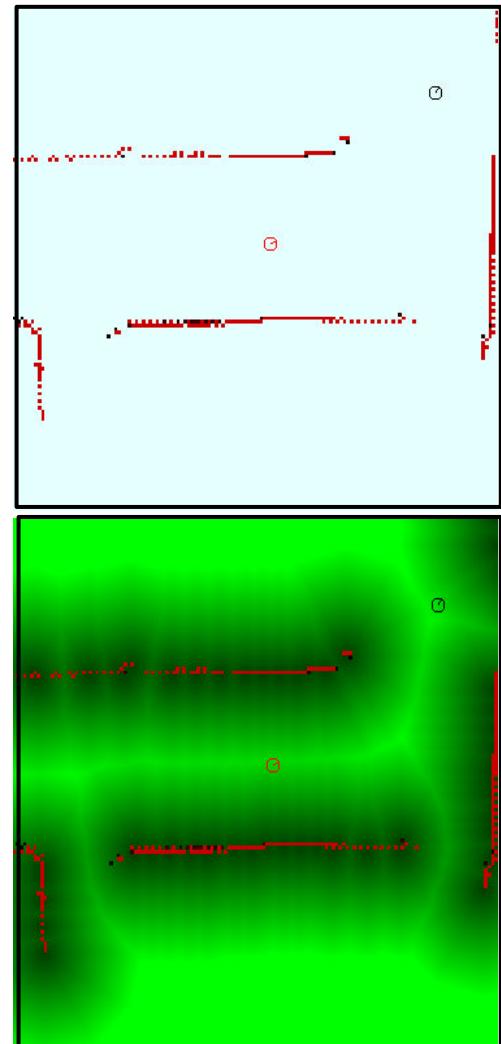
INCORPORATE LONGITUDINAL ACCELERATION LIMIT v'_i :



What remains to do

- current implementation considers only binary information from the evidence grid while doing the collision test
- better: collision test should also return minimal distance to obstacles for tested path

$score(path, startPose, headedPose) =$
 $|\vec{d}| + c_1 * \mathbf{a} + c_2 * path.length + c_3 * distToObstacles$



Preliminary Experiments

